
__USAISEC AD-A267 978

US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH

IN MANAGEMENT INFORMATION,
COMMUNICATIONS, AND COMPUTER SCIENCES

INTEGRATION OF SEVERAL

COMPUTER SYSTEMS WITHIN A

HETEROGENEOUS ENVIRONMENT

ASQB-GM-92-024

September 1992

DTIC
SAELEC TE

AIRMICS

193.

115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

93-18874%.i

DISCLAIMER NOTICE

THIS REPORT IS INCOMPLETE BUT IS

THE BEST AVAILABLE COPY

FURNISHED TO THE CENTER. THERE

ARE MULTIPLE MISSING PAGES. ALL

ATTEMPTS TO DATE TO OBTAIN THE

MISSING PAGES HAVE BEEN

UNSUCCESSFUL.

UNCLARIFIIRT
SForm Approved

REPORT DOCUMENTATION PAGE No. 0704--11e
1_ Ex. Date: Jun 30. 1986

ia. REPORT SECURITY Css•incATION lb. RESTRlCTIVE MARKINGS

UNCLASSIFIED WINM

2a. SECURITY CLASSnIFCATION AUTHORITY 3. DISTRIBUTION / AVAIIABILITY OF REPORT

N/A
2b. DECALSSPIICATION / DOUWNGRADING SCHEDULE N/A

N/A

4. PERFORMINO ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQB-GM-92-024 N/A

6s. NAME OF PERPORMIO ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION6a. AMEOF PI•O~tMNG RGAIZAION(it applicable)
AIRMICS ASQB - GM N/A

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City. State. and Zip Code)

115 O'Keefe Bldg.,
Georgia Institute of Technology N/A

Is. NAME OF IUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
AIRMICS ASQB - GM

Sc. ADDRESS (City, State. and 2IP Code) in etymeL" tp vemrnrn vt'; quruc

115 O'Keefe Bldg., PRoGRAM PROJECT TASK WORK UNIT

Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.

Atlanta, GA 30332-0800 62783A I DYlO 00-08
I1. TITLE (Include Security Classification)

Integration of Several Computer Systems Within a Heterogeneous Environment (UNCLASSIFIED)
12. PERSONAL AUTHOR(S)

William 0. Putnam, Ian E. Smith

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year. Month, Day) 1S. PAGE COUNT

Final FROM _ TO September 1992 52

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 15. SUBJECT TERMS (Continue on reverse if necessary and Identify by block number)

S FIELD GRP-o oUr Information System Architecture, Information Architecture Reference Model
(IARM)

19. ABSTRACT (Continue on reverse if necessary and identity by block number)

This project prepared the AIRMICS testbed for an evaluation of the Information Architecture Reference
Model (IARM). Plans are to perform the evaluation by integrating a set of independently developed applica-
tions into a heterogeneous environment.

The project also modified and enhanced the IARM to incorporate it into the Army's Information Systems
Architecture Circa 1997 plan (ISA97).

20. DISTmTIBON I AVAILABUITY OF ABSTRACT 21. ABST•ACT SECURITY CLASSIFICATION

SUNCLASSIED UNUMITED - SAME AS FTP. 3 Dric usu UNCLASSIFIED

22a. NAME OF Ri•SPONSIBLE INDIVIDUAL 22b. TELPHONE (Include Area Code) 22c OFFICE SYMBOL

Gerard C. McCovd (404) 894-3110 ASOB - GM

DD FORM 1473, #4 mm 53 APR edition my be used until exhausted Ewrwtn-v (&eerlmc nl Ttn PAPe

All other editio an e obsolete UNCLASSIFIED

Executive Summary

This report describes a project which prepared the AIRMICS
testbed for an evaluation of the Information Architecture Reference
Model (IARM). Plans are to perform the evaluation by integrating a
set of independently developed applications into a heterogeneous
environment. The project also modified and enhanced the IARM to
incorporate it into the Army's Information Systems Architecture
Circa 1997 plan (ISA97).

Contents

1.0 Introduction .. 2

2.0 Sum ;.iary of Activities ... 2

3.0 Conclusions .. 7

4.0 A ppendices ... 8

4.1 Appendix 1: [ARM Slides

4.2 Appendix 2: Equipment List

4.3 Appendix 3: Converting Sunview Applications to X: An Introduction

4.4 Appendix 4: Converting Sunview Applications to X: Some Notes for Programmers

4.5 Appendix 5: Introduction to the X Window System (Slides)

Accession FPor- ,.•q

fTIS GRAH A .
D'IC TAB 0 T.
Uucannounced 0
Justit ! c t ion

VncQJULM lgpOMD3 a trlbtl#t ion/ o

jAvall and/or

L Special

SPARC workstations in the testbed. The task of obtaining and installing the X Window
software will be performed under this project. Plans for enhancement of the testbed network
will be developed.

Study of the IARM continued. The model required changes to accommodate the Army's
Information Systems Architecture Circa 1997. A need for more information on open sys-

tems standards and technologies was identified.

During the month of March the X Window System software was obtained and loaded onto a
Sun 3 workstation in !'he AIRMICS network. The system is quite large (over 150MB of source

code) and required extensive study to configure and build.

Work was also done on the development of the IARM and its integration with the ISA97
plan. We decided to merge the two into a single model of information system architecture.

Information on open systems standards and technologies was gathered.

AIRMICS PC systems were integrated into the network using PC-NFS software for TCP/IP

communications. Supported applications include remote printing, file transfer, electronic
mail, and remote file systems mounted from Sun workstations and the AIRMICS file server.
We began examining interface compatibility products to provide a consistent user interface
between DOS and UNIX systems.

During the month of April the primary focus was on the installation of the X Window System

on the Sun 3 workstations. The software was loaded, configured, compiled, and tested. Once

Sun 3 installation was complete the software had to be re-compiled for the 386i worksta-
tions. We also investigated X products for the DOS systems in the network.

The focus of the project shifted from integration of ANSWER, RAID, and 1OIS to refinement

of the IARM into the ISA 97 Compliant Architecture Model (ICAM). The ICAM will de-
scribe the components of an information system and relate them to open systems standards

and technologies. It was decided that this project will focus on the definition of the Entry and

Operating System layers of the model.

During the period from May I to May 31, 1990 several steps were taken to continue the

upgrading of the AIRMICS research network. Information was collected on the costs and

capabilities of several commercial hardware and software products of interest to AIRMIvCS
including X servers for PC systems, X terminals, and diskless/dataless SPARC workstations.

A report describing the information collected and considering the pros and cons of the

technologies was prepared and submitted. Also, software to control the uninterruptible pow-

er supply on the AIRMICS file server was installed. A special cable was required to connect

the UPS control port to the server due to the incomplete implementation of the RS232 stan-

dard on the server's ALM serial card unit. Installation of the X window system on the Sun 3

systems was completed and work began on the 386i systems. SunOS 4.1 for the Sun 3

systems arrived but could be installed until memory upgrades for the 3/50 workstations were

installed.

During the period from June I through June 30, 1990, efforts were focused on the develop-

ment of an ISA 97 architecture model and proof of concept testbed. The objectives were:

3

ponent functions and these functions described. The expavtded material was formatted with
Interleaf and placed on the AIRMICS file server for inclusion with other ICAM briefing
material.

Two reports on the portability of GUI-based applications from proprietary environments to
the X Window System were prepared. The reports are based on the experience gained from
developing the WYWO application first in the SunView environment and then porting it to X
using both the XView portability package and toolkit and the MIT X toolkit. These reports
are included here as Appendices 3 and 4.

The FIPS publications for POSIX (151) and GOSIP (146) arrived and were studied. We hope
that these publications will give us a basic understanding of the standards and will lead us to
other documentation. Our goal is to develop a transition strategy or strategies for the migra-
tion to open systems.

During the month of October discussion of the ICAM model continued at weekly meetings
held at AIRMICS. The Entry and Operating Systems modules were given further attention,
with the intent of defining services provided by those modules to the Application module.

The Sun workstation equipment arrived and was installed in the AIRGICS network. The
process of moving user accounts to the new machines, installing Interleaf and other applica-
tions software, and converting data files to the SPARC format was quite time consuming. An
automated script developed for the Interleaf data conversion was helpful.

Backup of the AIRMICS file server became a problem due to the number of 1/2 inch tapes
required. The process was taking 10 tapes and most of a day to perform, making the system
unavailable for substantial periods. We began looking into the possibility of getting an 8
millimeter Exabyte tape drive which would back up the entire system on a single 2.5GB tape
unattended.

We began gathering information on COBOL compilers for the Sun SPARC systems to use in
porting STAMMIS applications into the testbed environment. We also began looking at DOS
emulator software for SPARC systems and UNIX work-alike software for the DOS systems.
This software would give a common user environment at the cormand interpreter level on
both types of systems.

During the month of November the integration of the new Sun SPARCstations into the
AIRMICS network was completed. User accounts are now accessible on all Sun systems and
files are mounted from the AIRMICS server using NFS.

Refinement of the ICAM Entry module services continued and created interest in GUI stan-
dards and development environments. The OpenLook GUI standard is implemented on the
Sun SPARCstations and is operational in the AIRMICS testbed. The MIT X Window System
which was installed on the Sun 3 equipment can interoperate with OpenLook, but is not
integrated - it has a different "look and feel". We wished to standardize the look and feel of
the GUI across all systems. This was to be addressed in three ways: 1) install the MIT X

release on the SPARCs as well as the Sun 3 systems; 2) obtain OpenLook for the Sun 3

systems; 3) obtain the Motif GUI standard software (the competitor to OpenLook) and in-

s

3.0 Conclusions

With the installation of the X window system software in the AIRNMICS testbed we are now
ready to install and integrate ANSWER and RAID. Other open system technologies such as
Graphical User Interface development tools, database integration tools, and networking
tools have been discovered during our migration and should be examined more closely. We
believe that several of these tools may be applicable to the problem of transitioning Army
information systems from the proprietary mainframe environment into the distributed open
systems computing environment.

Of particular interest are CASE and reverse engineering tools such as IDE Software
Through Pictures, GUI development tools such as ICS Builder Xcessory, graphical shell and
migration tools such as IXI Deskterm, and PC X software such as PC/Xview. A-vendor
survey should be conducted and selected products obtained for evaluation in the testbed.

It should be possible to migrate a selected STAMMIS into the testbed using these technolo-
gies to enhance the user interface and integrate the application with a relational database
system.

The IARM has evolved into the ISA97 Compliant Architecture Model (ICAM). Further re-
finement of all six ICAM modules is needed. Some detail has been provided for the User
Interface and Operating System modules. Slides detailing these modules were developed for
an ICAM briefing and are provided in Appendix 1.

The AIRMICS IARM testbed has evolved into the ICAM Testbed (ICAT) network. All work-
stations of the testbed now support the X Window System and the Motif and OpenLook user
interfaces. Further evaluation of these two competing interface technologies is needed. It is
not yet clear which will prevail in the commercial arena.

Using the enhanced testbed, it should now be possible to implement a demonstration of the
ICAM using selected applications and networking technologies. One area of concern is
networking: how will GOS1P affect the Operating System and User Interface modules? The
X Window system is TCP/IP based at this time, but there are indications that a migration to
GOSIP is being considered [see "Mapping the X Window onto Open Systems Interconnec-
tion Standards"; Brennan, Thompson, & Wilder; IEEE Network Magazine, May 1991].

7

4.1 Appendix 1

ISA 97 Briefing Slides
Operating System and User Interface Modules

William Putnam
College of Computing

Georgia Institute of Technology

This slide set was prepared for use in a technical briefing on the ISA 97 Architecture Model
and Testbed.

CL

C (1

co *cOn

"0 C.~0"0

o~ 4i &)

0.L

0 -c

6)) 0 OD

.~~
~ &

0
EC0

-0 CL

0~

-C -
.0 0

b.00

> 0 >~

> -~U r- a
.CDg

e CuD

. 0 0 LD

-E 5
0n * 0 w=

CL

tgo (A

> I-
O(L

CC

Cu C

.m0

06

*Poo

CuCL
0

0cu U
0

0

Q.

43

=- r-

c 0

toC.~ z2 aE ' -

c 0 M ~ 0 E

C 0 .Co E
5.6 C 0M- v-

0~'~ 0 0
.c ~ j tft Q 0 0M -- 4 : C

-

0 .
=r- 0

.0 0 00 0)

a 0 O' c tn~ c. aC %_

0) Ec0 E

0..)

"- C a,0 'BE0L

E w u x~ go a)

0 .n .0~
-a M 0 0

o 0 cQ (f - 10. 0.0 C-
rn 3: .

.E c .
en 0 : 0 _)

'S
W-) 0 0 ,

1 0
0
r CL c (00 0C 0 3 E 0

0

0,C 0)

o -~ -.I r'nm ~. 0 x 0
PWOi Z c 3 M

C - C0 CL>. OL

cc"6 z0 0,Q0CC 40 0'
W0 r.. oE Z

'a 0 c- 0

M 0 X

LU (.> O-oa-

LUi
z

CPS *MI ILI

- -

0 • -----wo

0 = .••
-

r o... ..,

I ~Iz

I 0I

Sc o 0

t- caI

Cx c)

0O E
I.O. ca -

5 ~.0
CC0u

is CU)
m 0 00)

lim Cu U). 00
op" &M.-

003.C 0

s-0 0 0
Mo CQ C 0

0 ~ _ 2

00 ~ m. 0
o X %--~ o. 0 cu

w 00 (l)00 -90- 1.

0.0

10

-

m 02 woo

64 0
>~ E

C0 00
I~ C) a

.00 o 50

0%

CI

Cua CDn

o 0
Eu 0

cc m

E

~CuC0

P-0-

b...0 CL

CD 0

I. 2

Iola
0 0)

00

- 6-

(A,
0 - tS

w I

IA

ci i,

c c -:

%-d E r-c
0 0

MCC .0~
E 0a a

- WS

00

(D E

E CD
CL cn

CD E

bE

"Dc- E -0
M 0 C _

c .. S0)

E 'mEd

.0. o c R0 -0~
Cjj- CDt

~E.5CD

wf

CO E

cci
0 ~

0

0-0

Ch

.0 *.0

-" 0 0 0O

CL C.-

.2 E

o ch0
00

0O.0.

- ID

E%

4.3 Appendix 3

Converting Sunview Applications to X
An Overview

Ian Smith
College of Computing

Georgia Institute of Technology

Introduction

This document will discuss the problems involved in converting an existing Sunview based
application to X. The challenges involved in porting an application are many and varied.
They range from simple correspondences to complex design issues. In this paper we will
discuss se, eral of the major issues that are evinced in this process. Principal among these
problems is the one of "enforcement." X gives the programmer and user all the freedom
that they want (or may not want); Sunview enforces user interface rules. To compound this
problem, there are areas of Sunview that simply do not correspond to any simple type of
construction in X. There is also the problem of getting high quality documentation. All of
these issues will be discussed, as well as potential solutions.

Background

Before one can understand the problems in porting programs from Sunview to X, a bit of
background is needed. The most significant difference in the way X applications are written
versus Sunview is that X has the concept of 'Widgets.' These widgets are user interface
construction blocks -- like scrollbars, buttons, and windows -- which the application pro-
grammer uses to construct the application. Sunview does not have this concept. Several
widgets are usually put together into 'Widget Sets' (sometimes called 'toolkits') in which all
widgets function together and use similar user interface conventions. Many vendors market
widget sets and several others are available for free. Some of the more popular widget sets
include (with authoring organization in parenthesis) the Athena Widgets (MMT), the HP
Widgets (Hewlett Packard), the XView toolkit (Sun), the Andrew toolkit (CMU) , and the
Motif Widget set (OSF). Of these, only Motif is a 'for-sale' product.

There are many widget sets available, each with their own strengths, weaknesses, and user-
interface. This can be a problem if the user is confronted with several programs that func-
tion differently. This problem does not exist in Sunview. In this manner, Sunview can be
thought of a window system that has exactly one widget set. We will see later that widget
sets provide both a problem and a potential solution in our attempts to convert Sunview
applications.

Sunview Enforces Policy -- X Does Not

Most of the difficulty involved in porting an application from Sunview to X revolves around,
if not hinges upon, the fact that X does NOT enforce any type of user interface (UT) policy

11

The XView toolkit is a set of programs written by Sun in an attempt to make X programming
feel like Sunview programming. The XView user interface is different than the Sunview
one. XView however is not a panacea. As mentioned before, X and Sunview are consider-

ably different and XView suffers when it tries to make X an exact match of Sunview. To its

credit, XView is considerably easier to program in than most widget sets, and does in fact

make X programming 'feel' like Sunview. However, its problems are considerable. I was

unable in some cases to get XView to reproduce behavior of a Sunview program. The XView

documentation, unlike the Sunview documentation, is poor. Additionally, XView is Open

Look compliant, and it expects an OL compliant window manager to function perfectly.

This is not a major drawback, but can be annoying.

Sun provides with XView a set of scripts that are supposed to convert some or all the of the

Sunview code to XView. As far as I could tell these were of little value. These scripts

generated XView code correctly, but what they generated differed only slightly from the

Sunview code. Also, because they were automated, they certainly did not provide any assis-

tance in areas of the code that were proving difficult to port. Converting the code by hand,

with the XView conversion documentation proved at least as easy as the automated process.

Additionally, this procedure allowed the programmer to use his own intelligence and knowl-

edge of the code to produce higher quality output.

The Athena Widgets are being considered in this paper more as a representative of the

normal type of widget set than anything else. Normal widget sets are those that obey the

normal X conventions for widget definition and usage, which XView does not. XView fol-

lows the Sunview conventions. Porting an Sunview application to X with the Athena Widgets

is difficult too. In many cases, the code has to be revamped in order to fit completely within

the Athena Widgets constraints. However, due to the fact that the athena widgets comply

with the X standards for widget sets, lower level calls can be invoked (if the programmer

desires) so that no portion of the interface has to change from a user perspective. This

basically allows the programmer to easily subvert the constraints of the widget set.

It should also be noted that much of the third party documentation on X (in fact nearly all of

it) expects 'normal' widget sets, like the Athena Widgets. There recently has been a book

published, however, on XView programming. I have not reviewed this book.

Conclusion

In conclusion the porting of programs from Sunview to X suffers from three major stum-

bling blocks:

1) Areas that do not map easily from Sunview to X;

2) Making the correct choice for the widget set in the X environment;

3) Inadequate documentation.

Of these, the second and third can be avoided almost completely if sufficient time and

energy are spent prior to the commencement of the project. The first problem is more

difficult. In most cases, and experienced X and Unix programmer can work around the

13

4.4 Appendix 4

Converting Sunview Applications To X
Some Notes for Programmers

Ian Smith
College of Computing

Georgia Institute of Technology

Introduction

This document will describe the problems involved in porting Sunview applications to X. It
is assumed that the reader has a general knowledge of unix, X, and Sunview. It will cover
specific problem areas in some detail, and will probably only be of interest to those actually
doing ports. It assumes that reader has a system running unix (bsd 4.2 or greater), X11R4,
and Sunview. This document should be considered as a guideline only, and your port should
dictate its own individual needs.

How to write Sunview programs that are easy to port

It cannot be stressed enough how much good, original design will speed the porting process.
The most import thing to keep in mind when writing a Sunview program that might be ported
to X is separation. Separate the user interface from the functionality as much as possible.
The following separation guidelines can be helpful when Sunview work is done.

1) Physically separate the user interface (front end) from the functionality of the program.
This can be accomplished with separate files and/or directories. If you are careful to do this
porting time can be reduced by large amounts.

2) Write the functionality (back end) as unix program that uses stdin and stdout then write
the front end for it. You can usually accomplish this easily via the system call popen. If you
require more sophisticated interfaces you can use the fork/exec/pipe sequence of system
calls.

3) Document the user interface as thoroughly as the functionality. Good documentation,
especially of global variables that proliferate in window system applications, can save a lot
of time later on.

How to use X resources efficiently in a porting situation

In general, make all available use of the X resource database. During the process of porting
the application, you should generally try to map all "attribute-value" pairs in the Sunview
code to an X resource. When you converting the code, as always, try to avoid putting any
constants in the X source. This accomplishes two things: First, it makes the program amena-
ble to user customization. Second, it speeds up the porting process by avoiding the need to
compile potentially large amounts of unmodified code.

In particular, pay special attention to the translation manager and its translation tables.
Good use of these tables in the resource file can give you emulation of the Sunview user

1s

B" .. = -. i mimm lnlll m U I

4) Use XSetlconName(...) to hint to the window manager what you would like your icon's
name to be.

It should be noted that if the window manager does not use the window property

WM HINTS for communicating with clients, this method is useless.

Cursors

Cursors are similar in X and Sunview. The only significant difference to be aware of is
Sunview prefers you to define your cursor at the time a window is created and X does not. In
X you use XDefineCursor to associate a cursor with a window.

There is a trade off associated with using the standard X cursors. If you use one of the
predefined cursors (there are about 75 cursors distributed with X) in a manner similar to the
way other applications use it, you will have an important clue for X users in how your
application is operating. Conversely, if you create a custom cursor that is similar to your
Sunview cursor you will have a smaller learning curve for users familiar with the Sunview
version. These two sides must be weighed on an individual bases for every port.

Focus (popups and warnings)

The X focusing model is less restrictive than Sunview, in general. If your code uses the
Sunview split focus model, be sure that you use the grab functions (XGrabPointer, XGrab-
Keyboard,XGrabServer, and most important of all for widget programmers XtAddGrab) to
control explicitly which window is getting user input.

In the most part you are going to want to force focus into a widget that has some type of
urgent message or warning. If you use the athena dialog widget you can get the widget set to
do this for you. Otherwise you will need to call XtAddGrab with appropriate parameters,
thus forcing the user to deal with your warning message.

Constraint widgets

In Sunview there are basically two "constraint" widgets, the frame and the panel. The
Athena analogues of those two widgets are the form and the paned widget. These are the
two basic constraint widgets in the Xaw library and have similar functionality to their Sun-
view counterparts. (Note: Most other widget sets have similarly named widgets with the
same functionality.) However, often X composite widgets can serve needs that are met be
complex constructions under Sunview. Be sure to look carefully at the Viewport widget,
which is often used to pan a window over a large virtual surface.

Do not feel limited by the constraint widgets of the Athena widgets. Many other widget sets

have constraint widgets that will work successfully Athena widget children. It is often quick-
er to look for a constraint widget that implements the layout semantics you want than to use
a widget that does not easily support your layout. The HP widgets are an especially good

source of constraint widgets.

Look and feel

Look and feel can be difficult point when porting Sunview applications. In general, it most

important to preserve the functionality first, then make a functioning program look and feel

17

4.5 Appendix 5

An Introduction to the X Window System

Ian Smith
College of Computing

Georgia Institute of Technology

This slide set was prepared for use in an introductory briefing on the MIT X Window system.

19

'WE

00~

zoI

4)o

o0

1-4 q~d.cz

~ 4)

c4)

,AD ~ 1-

to 4

4))

c4)

1C1

0 4

'I, 0

cq~

0 ~00

co

-' 4)
coJ

-z0 *a

Hc
co~

co co

4)z
cq4

S)

0

* -II
o --- -
" b."

4)'

S.• • ' " - lm nm nmmnllnlll i n l lin I b I

ag

0

.- r

-x cd o

0 0 0

0 0

cicz

Q CIS
C.).

I-i
E E

c-4

0 z 0

00

Cd))

0%
cc

0 Pol

c

0z iz ;
cdca

00
0o

*1'4

cF.
Ea

4) 4)

4)

c~ 0

(U 4) 4

0)
~0 '0 4

cz- cc
-. 0 0o

4) .

E cE 4)
E ta.

0.0

4) z

0

450

